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A strategy to evaluate an exper t  system is forrmlated. 'he 
strampmposed is based on fixxlhq an equivalent classifier to an 
expert system and evaluate that classifier w i t h  respect t o  an optimal 
classifier, a -yes classifier. 

classifier exists. Also, a brief amsideration of meta and m-mta 
rules is wuded. Also, a taxlcawmry of expert systems is presentEd and 
anassertl 'on mde that an @valent classlfier exists for ea& type of 

assupti-. 

lhis paper shows that for the rules amsidered that an equivalent 

system in the taxamny with associated setis of Umkrlyirrg 

. 
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It is the purpose of this paper to formlate a f d  mathematical 
relationship betxeen an expert system and a classifier. If irxleed the 
relationship is unique and -le, then o m  w i l l  be able to 
eydLuate an expert system by cmpariq that system to a Bayesian clas- 
sifier which is by definition the best estimate. 

~n oxder t o  formulate a general result one nust develop a defini- 
tionofanexpertsystemandataxomuyofspecialtypesofexpert 
systeprrs. I have selected my glossary from a drxument pmpared for 
Electric Reseaxb Institute entitled, Apwua Chestothe 
Verification and V a l i d a t i o n  of Expert systems c11 

foundation for evaluatirq expert system. 
Ihe major purpose of this paper is to develop a theoretical 

2. EXFUPTICNOFEXPERl'SYSFE3B 

A number of definitions of expert systems are fcxnd in Artificial 
Intelligence literature, but the most informative, yet cancise one 
seears to be the follaWing. F W ,  they perfom large, tediously 
q l i c a t e d  and saetmes ' difficult tasks at expert levels of per- 
fonnance. 
strawies over the mre general 'weak nethods' of AI. 
enplay rules of self -ledge to dynamically consider their clwn 
inference process and pruvide explanations or justifications for 
d u s i o n s  mad&. 

m, they enphasize dcanain specific pmblem-solvq 
Third, they 

An expert system usually consists of fcur main parts, as Shawn in 
Figure 1. 

I. Khawledae ~ase(sl of structured damin facts and their 
relationship a d  heuriitics (prablemsolving rules), 

relationships, and heuristics in solving the problem(s) at  hand, 
usually under the control of an o v a l  Meta-Cmtmller module, 

solved and the history of the solution pmcess, and 

tions, and interaction facilities for user inguts. 

interface, but AI progranrmng techniques are always used for repre- 

2. Inference mine(s) for controlliq the application of facts, 

3. prcblem Data ~ a s e  of infomation abaut the pmblem being 

4. User Interface pruviding results/status displays, explana- 

=-Mor- ' m a l  software tedm~ques can be used for the 
storage maMgemerrt of the problem data base and the control of the use 

senting the laowledge base(s) and developing the lnf- emjine(s). 
In the sections that f O l l ~ ,  the diff- ktween expert 

sYs-=and- 'onal software and the types of expert system, w i t h  
respect to the ease of verifying and validatirq them, will be ais- 
(USSBCI. 

2.1 Differences From Coment~ ' O M l  software 

scientist claim that expert systesrrs differ f r u n  aoanren- 
t ional  software progmms buth in  the types of pmblenrs they solve and 
theirirrternal structure. I&eahumnexpert,theexpertsystemhas 
t o  aaxrrmodate infomation that is incaqlete, emmea~~,  or mislead- 
ing. 
nust be made. also claim that a conventional software program 
IrKZks wrrectly only when inplts are cenplete, of the pmpr syntax, 

Yet, a a i o e  of an action or decision among several alternatives 
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and the pmblem is anbi-. lhese claims are mt a t  a l l  obvi- to 
others in other discipline who view AI Md AI tools as sinply ccquter 
language and an aFgroacfi to helping solve inprbnt ew-w 
prabl-. ~ok~wer,expertsysteansandtheirrulebasedoesposesane 
T L ~ W  specific prublenrs m evaluation of software. % problems expert 
sptens are designed to solve generally fall  into the following 
categories: 
d t = i W ,  del-xrggurg, +, - 'onandcegltrol. Nutloe, each 
of tbse categories ccmtaln a eunction of dserving, recognizing and 
may iml- a call for action. 

have many stsuctural similarities w i t h  ocnvenh 'cmal 
software in the nwlules whia perform cxmvmtl ' o n a l t a s k s d a s ~  
prublem data process-, data mnanagearerrt, and user interfaoe display 
processing. Iadever, the 00- of €%pert systeus, including the 
kmwledge bases and inference engines, can be different. symbolic 
mpmsenbtion techniques are p r m i l y  U S d  to repmsent )mrwledge 
versusc!mwntl 'anal sofbare's numeric or table-based techniques for 
representing infomation. lhese m l i c  representatims M u l e  
infomation abart relationships 
aggregations and infomation abaut heuristics (- and niles) 
for -1em solving, w h i c h  are not rep- in axwentional data 
bases. Expert  systems are developed to  solve prablems a c h  may rmt 
have easily formalized or algorithmic solutims, so the prableat-solving 
apparatus (inference engines) llllst use - 'onalmethods, in- 
clw heuristic-guided search, symbolic i n f m i n g ,  generation and 
test of solutim, and cxm&mmt -based-. 

It is these differences fran conventianal software which make 
=P=tsystems* ' and applicable, and yet also less easily 
tested, verifie?%?%%~. muse their solution methods are 
O f t e n  ' ly-andnotprescribedinastraightfonard 
ttrecip- lh cawmtionit. solution -, harder to '*mve" axrect. ~. 

2.2 -P=-tw-=lTYPes 
into types, by 

application, by nrethod of reascnring, etc. 
are fund in Table 2-1 and Figure 2-1. In this disrxlss i q  =P=t 
systems w i l l  be divided into types relative to the c~lplexlty and 
difficmlty of perfomitq V&V on each type. ake types are listed in 
Table 2-0. 

intqnatim, prediction, diagm6is, design, p l W ,  

data iteans a d  data i t e n  

are w f o m  

There aremany ways of dividing exper t  
mles of these srarpings 

!t!AEm 2-0.- ExFEKr SYsrEM TYPES 

NUMBER !!?!?E 
1 Sinple, based on codified -ledge 
2 Sinple w i t h  ' Handling 
3 Sinple, h= -1- 
4 Elicited w i t h  UzerbmQ ' Handling 

' Handling 
5 Oarpla  
6 canplex with uncertaurty 

ake first type of expert system, Sinple, is develcped t3umgh the 

w i t h  

straightforward ermdiry of validated and verified decisicm tables 
ana/ar--. I t s s e a r c f i s p a o e i s s m d L l a n d ~  w i t h  
exhaustwe  sea^& techniques or 1- and factorable and exaormned 
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Table 2-1 

Category 

Interpretation 

Prediction 

D i ag nos is 

Design 

Planning 

Monitoring 

Debugging 

Repair 

Instruction 

Control 

GENERIC CATEGORIES OF KNOWLEDGE 
ENGINEERING APPLICATIONS 

Problem Addressed 

Inferring situation descriptions from sensor data 

Inferring likely consequences of given situations 

Inferring system malfunctions from observables 

Configuring objects under constraints 

Designing actions 

Comparing observations to plan vulnerabilities 

Prescribing remedies for malfunctions 

Executing a plan to administer a prescribed remedy 

Dianosing, debugging, and repairing student behavior 

Interpreting, predicting, repairing, and monitoring 
system behaviors 
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1 
Small Solution Space I 

2 

Data Reliable & Fixed 
Reliable Knowledge Requirements 

Exhaustive Search 

Single Line of Reasoning 
Prescriptions Monotonic Reasoning 

I . i 

Combining Evidence from 
Multiple Sources 

Probability Models 
Fuzzy Models 
Exact Models 

3 

Unreliable Data or 
Knowledge 

I 4 I 
I 

Time-Varying Data 

State-triggered 
Expectations 

I 

Big, Factorable 
Solution Space 

Hierarchical- 

Generate-and-Test 

5 I 

No Evaluator for 

Fixed Order of 
Abstracted Steps 

6 I 
No Fixed Sequence 

Abstract Search Space 

7 I 
Suproblems Interact 

Constraint Propogation 
Least Commitment 

I 

8 

I 
I 

I 
Efficient Guessing 

Belief Revision for 
Plausible Reasoning 

9 I 

Single Line of Reasoning 
Too Weak 

Multiple Lines of 
Reasoning 

10 I 
Single Knowledge Source 

Heterogeneous Models 
Opportunistic Scheduling 

Variable-Width Search 

1 1  I 
Representation Method 

Too Inefficient 

Tuned Data Structures 
Knowledge Compilation 

Cognitive Economy 

Figure 2-1. Expert System Types Based on Reasoning Methods 
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emmxative seamh techniques, for d& prw>fs exist of the best -. 
w a n d  4 ~tl Figure 2-1. 

that the knowledge to be encoded into the expert system has almady 
b e e n w r i ~ d c r w n i n s o m e f o K T a a n d t e s t e d f o r ~ .  I f t he  
codified decision tables or procedure trees nust be augumted Wiul 
~ k n o w l e d g e , ~ t h e e x p e r t s y s t e m d o e s n u t f a l l i r r t o t h i s  
type cal32goKy. so, V&V of this type of expert system itlvolves merely 
Errcnrirrg that it azrec t ly  represents and uses tb knowledge, nut tht 
the larcrwledge itself is COLTect. 

Miq, has the features of sinplicity and - w i n  - 
mn with the first,  krt also oertzunty factors, fuzzylogic, 
probabilities, or sare other method of deal- w i t h  UTyIeTtiun ' infol? 
mation. ' I h i s t y p e o f e x p e r t s y s t e m ~ y m ~ t o t y p e 2 i n  
Figure 2-1. 
ontheexkteme or value of -1- iteasunmZtheiz2Lunieaatnty 
and . on the rules, reflecting the expert's ' of 

=ty of the rule on the anteoedent c m d Y  
apmpiateness of t%e caa2clusions. Expert systems may h r p o r a t e  
elther or both fornrs of . Therearevariousmethodsof 

Itl an decision of da d i n a t i o n  M m ( s )  
to use is ccllplex ard analysis and judgment m % part of 
w knowle&p eqineer and eqert and effects the reliability of the 

values on knowledge systan. 
itere or rules, the method of --=acto= mxst-1-y is 
not en and tested. And, usually, tb Valufzs themelves do 
not must be elicited - exprts. ample is 
Prdxbility Risk Assessmerrt (PRA) prior event pmbabilities. Even 

correct, to the best t%e probabilities can 
be d j n e d  and what prebabilities to place on rules have nut been 

andtested. merefore, hx3lirrg Wli- 
E V  of sinple expert --the need to v6tv the 
oerhhty  factors and their d m a t i o n  method(s) . 

Ihr? thixd type of expert system, Sinple based OBI Elicited 

plicity of the previa= W types is still evident 

system. Iiowwer, the knowledge (itens and rules), or sane portian of 
it, does not ' 

usuiiuy one e - i v e  
to  verify that the kmwlpdcre required to solve the prcblan is actually 
being elicited and that it is encoded praperly. 

-iq, is a d i m t i o n  of the 
been elicited fram an exprt  and it inclules certaurty ' factors. ~n 
exauqle of this type of expert system is the Mycin system in the field 
of medical diagrrosls developed by Stanford University. v&V of this 
type of expert system m d  indlude testing the correctness of W 

axmdmssoftheuncertaurty factors, and the omrectness of the 

A smle line of reaxrning is used and reasmiq is nnx3txmic, 
a sjqle, best answer, lmis type roughly carrespds to 

Imemostimportant feature besides sinplicity for this type is 

Imesecordtypeofexpertsystem, Sinplewith 

There are two general types of 

' f a - m y  be &care or in ccmbinatim 

hren i f  there exist pre-prwen 

tobe #ese prababilities andhanrebeencEeterrmned ' 

Khcrwledge, i s p x b a b l y t h e m o s t ~ t y p e i n  me Sim- 
an expert system building tool or - wasusedtodevelopthe 

in  a tested form and nust be elicited fran 
a m  -m and tested 

The fcazth type of expert system, Elicited with 
and third. EEZZedge 

knowledge, w axTe&m= of the knowledge irnplanentatiool, the 
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ccmbination functiopls(s) 0 

W f t h  type of expert system, -lex, eliminates a l l  or soene 
of the simplicity assmpt~ons of the previazs f a x ,  as listed in W 
description of the first type of expert system. Ihe search space(s) 
can be infinite or large and unfactorable, sutpx&lems w i a  the 

used to l i m i t  search and nultiple lines of may be pxsued to 
yEmduCecandidate-. a u s t y p e o f ~ s y s t e m  x- to types 5-11 in Figure 2-1. U s u a l l y  the knuw- 

1- IS elicited frcm more one expert, so conflictq heuristics 
may arise. Also, usually expezt sys tem lxlming tools are nat Used to 
inplemerrt these system because the tools do not '&law the ccllplexities 
to be lalilt in. 

vehicle -1 and battle mmgemnt applications, such as those in  
the strategic ' prosramfundedbytheDeferrse-- 
Projects -w 1986). B p r t  Systans of this type are j u s t  
rylw beginnuq to work in a primitive fom, aril V&V of these systems is 
still a resear& issue. It is very unlikely that this type of expert 
system will be denrelopd for non-nulitary application any time in  the 

sed. 

Handling, adds the caplicatirq factor of 

m l = = Y  - in mi- ways, c z d x a m t  -basedreasonirrgmaybe 

mles of the fifth type of expert system include autananous 

nearArture, s o V & V o f t h i s t y p e o f e x p e r t ~ w i l l n a t b e d i s c u s -  

fifth, making v&v even more impossible 
issue. mistypealsowillnatbedisr=ussed. 

~ s i x t h t y p e o f e x p e r t ~ , C a r p l e x w i t h  

3. ' M E m R E s m r  
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Po = [%"C,I I 

are the a priori probabilities that the system are in the respective 

Also let data be taken to make a decisian as to a& state the 
system belaqs. 
dent, lawxrJnewctly (de- 'c) or abservable (rardan). 
todeterrmne ' i f  c1 -, = folluw the usual logic of statistical 
classification theory [2]. if 

The data can be vector valued, depkht  or hdepen- 
In order 

x = (3, 3, ..., Xp'T and Y = (Y,, Y2, . . . I  Y s "  

the dxs;enmtiolls, then the mzocJnitim rules are 
RRl I f X E  

If xlf 

If Y 4 
weuSethe~tionC;todenute 

RR2 I f Y e  

A 

%, then c1 = 0. . 

%, then % = 1. 

Rz, then C, = 0. 

%, then C, = 1. 

t h a t w e e S t i m a t e t h e v a l ~ O f C ;  
and do not lawr~ that value'ewctly. TIE classification regions IU a& 
R2 are selected by the expert or optimally as -yes regions. 

to a classical statistical classificatim prcblem. we knm the solu- 
t im to this pmblem; that is, the best classifier is a ayes classi- 
fier. A &yes classifier is ore inwhi& the regions % and Rz are 
selected juaicia;lsly to assure that the expect& aosts of misclassi- 
ficatim are minimized. 

pmbabilities that an expert system camits errors can nm be 
ampted when the probability density m o n s  f(x) and f(y) of x and 
Y a r e l r m w n .  ?hatis,  

Nate that the set of rules hben described as abmE is equivalent 

A 
Pr [C, = 0 \s = 13 = 1 f1(x)dx 

R, 

Pr [b2 = 0 IC, = 11 = J f,(Y)dY 
Rz 

21-10 



andtheprababilityofnotmakirrganerrorisgiven .. 
4 

Pr [C1 = 0 1 c1 = 01 = J fo(x)dx 
R1 

Note that i f  X and Y are 

one can stack the observations into a new rand~m vector z = (x,ylT 

swP--- saae %eliefstl COBlcerniTllg the rules. Let us 

then variaas mined prab- 
abilities can be canpted easily. If X and Y are not then 
the joint pmbability miiy functi.cn is requird. 

and establish Z as the data vector. 
the effect of the c u v a r m  dxucbre of X and Y. 

!Ibis form allom one to wnsider 

Imdel then in the following fom. 

RBo P r [ R O i s t r U e ]  =s, 

RB2 Pr[R2 i s t r u e ]  =q2 

RB3 Pr[R3 is-] = q 3  

lmis i n  many applications can affect the action, that is, the 
actions are modified to 

Ro If ClAC2, then Pr[%] = s, 

These rule can be rmdelled as s tahash  'c actions ach are applied 
--==Pt 

for con- 
w i t h  a specified pbabi l i ty .  lmis formlation h tmducs  
of StdlaSh 'c actmns. 

exanple consider the following ttJl0 types of conflict resolution rules. 

!this in turn generates a 
flict resolution rules for handling mcerbmh . *es--. To 

CRRl: If q)l-q, then select a d o n  A, i f  qsl-q, select action A'. 
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m: 
N S q  then select a d c n  %; if q c N 5 1 ,  then select A& 

&astic rule. 

Generate a uniform rardrxn nmbr N on the interval [0,1], if 0 c, 

‘cruleswhileCRR3isasto- . .  T h e  first tlm rules are 
Clearly, these rules can be exkn3ed to mre than t m  

actions per rule. 
W h t  we have dore is given a precise fondation of an expert 

system wbich in tuxn gives a mathematical mdel for evaluatiq the 
expert system as cuqamd w i t h  on cptimal Bayesian classifier. 

m us Tylw cmlslder the pmblem of evaluation. I& 

mgions. 

Rz 

1 See Figure 3.2. 

Y 

- 
Y 

Y 
L 

- 
X X 

x %  
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F i q p  3.2. 

Now consider the foll- meta rule and a m-meta  rule: 

T h e  (X,Y) plane partition into a d o n  regions based 
an Bayesian classifier. 

MEU: If after K t r i d l s  

thm replace ( a's are preselected IaCkJn parameters), 

Po w i t h  aoPo + (1-ao) I$,/K 

P1 w i t h  alp1 + (l-al) %/K 

p2 with 3 p 2  + (1-3) K2/K 
P3 with a3p3 + (I-%) %/K 

and ccmpute new regions % and 3. 
MlEU: L e t  K ( j )  = K + j 50. 

The argument appears reasamble that an expert system can be 

system can then be evaluated by evaluat iq  that classifier. 
modelled mathematically by finaing an equivalent classifier and the 

4. o o " G R E z m R K s  

The types of expert systems listed inTable 2.2 and aiscussea in 
Section 2 of this paper may now be defined precisely by defining an 
associated classifier when differerrt amount and/or kind of huwledge 
differs. 

W dims evaluation of aprt systems to be done in a direct 
way Ocmpatible w i t h  the theory of classification. 
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